-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_finetune_vul_detect.py
464 lines (407 loc) · 19.2 KB
/
run_finetune_vul_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import json
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from modeling import TracedForCls
from transformers.trainer_utils import get_last_checkpoint
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=0)
task_to_keys = {
"cxg_vd": ("code", None),
"rv_vd": ("code", None),
"d2a_vd": ("code", None),
}
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
max_seq_length: int = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
else:
train_extension = self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
validation_extension = self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
new_pooler: bool = field(
default=False, metadata={"help": "Initialize a new pooler layer for the model."}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t")
else:
# Loading a dataset from local json files
raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
num_labels = 2
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer_kwargs = {
"use_fast": False,
"config": config,
"do_lower_case": False,
"bos_token": "<s>",
"eos_token": "</s>",
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
"and load it from here, using --tokenizer_name"
)
model = TracedForCls.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
new_pooler=model_args.new_pooler,
)
# Preprocessing the raw_datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# Tokenize the texts
args = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
return result
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.argmax(preds, axis=1)
acc = (preds == p.label_ids).astype(np.float32).mean().item()
tp = np.sum(np.logical_and(preds == 1, p.label_ids == 1))
# tn = np.sum(np.logical_and(predictions == negative, ground_truth == negative))
fp = np.sum(np.logical_and(preds == 1, p.label_ids == 0))
fn = np.sum(np.logical_and(preds == 0, p.label_ids == 1))
precision = tp / (tp + fp + 1e-5)
recall = tp / (tp + fn + 1e-5)
f1 = 2 * precision * recall / (precision + recall + 1e-5)
with open(os.path.join(training_args.output_dir, "pred_detail.jsonl"), "w") as f:
prediction_probs = p.predictions.tolist()
predictions = preds.tolist()
labels = p.label_ids.tolist()
for prob, pred, label in zip(prediction_probs, predictions, labels):
prob = softmax(prob).tolist()
f.write(json.dumps({"prob": prob, "pred": pred, "label":label}) + "\n")
return {"acc": acc, "prec": precision, "recall": recall, "f1": f1}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif training_args.fp16:
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
else:
data_collator = None
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(eval_dataset=eval_dataset)
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
metrics = trainer.evaluate(eval_dataset=predict_dataset)
max_eval_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_eval_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if __name__ == "__main__":
main()