-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq.py
259 lines (224 loc) · 9.36 KB
/
q.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import pytz
import asyncio
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
from alpha import Alpha
from alpha import Amalgapha
# from general_utils import save_file, load_file
from data_master import DataMaster
class MNREV(Alpha):
def __init__(
self,
trade_range=None,
instruments=[],
execrates=None,
commrates=None,
longswps=None,
shortswps=None,
dfs={},
positional_inertia=0,
strat_configs= {
"shortrate": 0.10,
"longrate": 0.10
}
):
super().__init__(
trade_range=trade_range,
instruments=instruments,
execrates=execrates,
commrates=commrates,
longswps=longswps,
shortswps=shortswps,
dfs=dfs,
positional_inertia=positional_inertia
)
self.strat_configs = strat_configs
def set_strat_configs(self, strat_configs):
self.strat_configs = strat_configs
def _check_configs(self, strat_configs):
assert "shortrate" in strat_configs and "longrate" in strat_configs
def param_generator(self, shattered, param_idx=0):
axials = []
for dd_lookback in range(30, 260, 10):
axials.append((dd_lookback,))
if shattered:
def yield_params():
for param in axials:
yield param
return yield_params()
else:
return [axials[param_idx]]
async def compute_metas(self, index, delta_lag, shattered=True, param_idx=0):
await super().compute_metas(index)
self._check_configs(self.strat_configs)
dds, eligibles = [], []
for inst in self.instruments:
print(inst)
dd_lookbacks = []
for params in self.param_generator(shattered=shattered, param_idx=param_idx):
ddi = \
(1 + self.dfs[inst]["ret"]).rolling(window=params[0]).apply(np.prod, raw=True, engine="numba") \
/ (1 + self.dfs[inst]["ret"]).rolling(window=params[0]).apply(np.prod, raw=True, engine="numba").cummax() \
- 1
dd_lookbacks.append(ddi)
self.dfs[inst]["dd"] = pd.concat(dd_lookbacks, axis=1).mean(axis=1)
self.dfs[inst]["eligible"] = \
(~np.isnan(self.dfs[inst]["dd"])) \
& self.dfs[inst]["active"] \
& (self.dfs[inst]["vol"] > 0) \
& (self.dfs[inst]["adj_close"] > 0) \
eligibles.append(self.dfs[inst]["eligible"])
dds.append(self.dfs[inst]["dd"])
self.invriskdf = np.log(1 / self.voldf) / np.log(1.3)
self.eligiblesdf = pd.concat(eligibles, axis=1)
self.eligiblesdf.columns = self.instruments
self.dddf = pd.concat(dds, axis=1)
self.dddf.columns = self.instruments
self.eligiblesdf = self.eligiblesdf.shift(delta_lag).fillna(0)
self.dddf = self.dddf.shift(delta_lag).fillna(0)
def compute_forecasts(self, portfolio_i, date, eligibles_row):
drawdowns = self.dddf.loc[date].values
eligible_args = np.where(eligibles_row == 1)[0]
eligible_alphas = np.take(-1 * drawdowns, eligible_args)
argsort_alphas = np.argsort(eligible_alphas)
eligibles_size = np.sum(eligibles_row)
shortsize = int(eligibles_size * self.strat_configs["shortrate"])
longsize = int(eligibles_size * self.strat_configs["longrate"])
shorts = np.take(eligible_args, argsort_alphas[:shortsize]).astype("int32")
longs = np.take(eligible_args, argsort_alphas[-longsize:]).astype("int32")
forecasts = np.zeros(len(eligibles_row))
for i in shorts:
forecasts[i] = -1
for i in longs:
forecasts[i] = 1
return forecasts, shortsize + longsize
class EQMOM(Alpha):
def __init__(
self,
trade_range=None,
instruments=[],
execrates=None,
commrates=None,
longswps=None,
shortswps=None,
dfs={},
positional_inertia=0
):
super().__init__(
trade_range=trade_range,
instruments=instruments,
execrates=execrates,
commrates=commrates,
longswps=longswps,
shortswps=shortswps,
dfs=dfs,
positional_inertia=positional_inertia
)
def param_generator(self, shattered):
return super().param_generator(shattered=shattered)
async def compute_metas(self, index, delta_lag, shattered=True, param_idx=0):
await super().compute_metas(index)
alphas, eligibles = [], []
for inst in self.instruments:
print(inst)
self.dfs[inst]["smaf"] = self.dfs[inst]["adj_close"].rolling(10).mean()
self.dfs[inst]["smam"] = self.dfs[inst]["adj_close"].rolling(30).mean()
self.dfs[inst]["smas"] = self.dfs[inst]["adj_close"].rolling(100).mean()
self.dfs[inst]["smass"] = self.dfs[inst]["adj_close"].rolling(300).mean()
self.dfs[inst]["alphas"] = 0.0 + \
(self.dfs[inst]["smaf"] > self.dfs[inst]["smam"]) + \
(self.dfs[inst]["smaf"] > self.dfs[inst]["smas"]) + \
(self.dfs[inst]["smaf"] > self.dfs[inst]["smass"])+ \
(self.dfs[inst]["smam"] > self.dfs[inst]["smas"]) + \
(self.dfs[inst]["smam"] > self.dfs[inst]["smass"])
self.dfs[inst]["eligible"] = \
(~np.isnan(self.dfs[inst]["smass"])) \
& self.dfs[inst]["active"] \
& (self.dfs[inst]["vol"] > 0) \
& (self.dfs[inst]["adj_close"] > 0) \
alphas.append(self.dfs[inst]["alphas"])
eligibles.append(self.dfs[inst]["eligible"])
self.invriskdf = np.log(1 / self.voldf) / np.log(1.3)
self.alphadf = pd.concat(alphas, axis=1)
self.alphadf.columns = self.instruments
self.eligiblesdf = pd.concat(eligibles, axis=1)
self.eligiblesdf.columns = self.instruments
self.eligiblesdf.astype('int8')
def compute_forecasts(self, portfolio_i, date, eligibles_row):
return self.alphadf.loc[date], np.sum(eligibles_row)
def post_risk_management(self, nominal_tot, positions, weights, eligibles_i=None, eligibles_row=None, *args, **kwargs):
return nominal_tot, positions, weights
async def main():
load_dump = True
if not load_dump:
data_master = DataMaster()
misc_service = data_master.get_misc_service()
index_service = data_master.get_indices_service()
equity_service = data_master.get_equity_service()
comps = index_service.get_index_components("GSPC")
index_components = list(comps["Code"])
period_start = datetime(1990, 1, 1, tzinfo=pytz.utc)
period_end = datetime.now(pytz.utc)
component_data = await equity_service.asyn_batch_get_ohlcv(
tickers=index_components,
read_db=True,
insert_db=True,
granularity="d",
engine="eodhistoricaldata",
period_start=period_start,
period_end=period_end
)
print(component_data)
save_file("temp.dump", (index_components, component_data, period_start, period_end))
else:
(index_components, component_data, period_start, period_end) = load_file("temp.dump")
subset = 100
index_components = index_components[:subset]
component_data = component_data[:subset]
dfs = {
comp + "%USD" : data.reset_index(drop=True).set_index("datetime") for comp, data in zip(index_components, component_data)
}
trade_insts = [k + "%USD" for k in index_components]
eqmom = EQMOM(
trade_range=(period_start, period_end),
instruments=trade_insts,
dfs=dfs,
positional_inertia=0
)
eqrev = MNREV(
trade_range=(period_start, period_end),
instruments=trade_insts,
dfs=dfs,
positional_inertia=0
)
alphas = [eqmom, eqrev]
strat_dfs = [await alpha.run_simulation(verbose=True, delta_lag=0) for alpha in alphas]
stats = [await alpha.write_stats() for alpha in alphas]
leveragess = [alpha.get_leverages() for alpha in alphas]
weightss = [alpha.get_weights() for alpha in alphas]
instrumentss = [alpha.get_instruments() for alpha in alphas]
amalgapha = Amalgapha(
trade_range=(period_start, period_end),
instruments=trade_insts,
dfs=dfs,
positional_inertia=0.20,
weightss=weightss,
leveragess=leveragess,
execrates=np.array([0.0014753723651389232] * len(trade_insts)),
commrates=np.zeros(len(trade_insts)),
longswps=np.zeros(len(trade_insts)),
shortswps=np.zeros(len(trade_insts)),
)
combined_strat_df = await amalgapha.run_simulation(verbose=True)
await amalgapha.write_stats()
log_rets = lambda daily_ret_ser: np.log((1 + daily_ret_ser).cumprod())
plt.plot(log_rets(strat_dfs[0]["capital_ret"]), label="momentum")
plt.plot(log_rets(strat_dfs[1]["capital_ret"]), label="mean_rev")
plt.plot(log_rets(combined_strat_df["capital_ret"]), label="combination")
plt.legend()
plt.savefig("temp.png")
plt.close()
if __name__ == "__main__":
asyncio.run(main())