-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpha.py
558 lines (480 loc) · 23.4 KB
/
alpha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import pytz
import numpy as np
import pandas as pd
from numba import jit
from pprint import pprint
from copy import deepcopy
from datetime import datetime
from abc import ABC
from abc import abstractmethod
import db_logs as db_logs
def get_pnl_stats(last_weights, last_units, baseclose_prev, ret_row, leverages):
ret_row = np.nan_to_num(ret_row, nan=0, posinf=0, neginf=0)
day_pnl = np.sum(last_units * baseclose_prev * ret_row)
nominal_ret = np.dot(last_weights, ret_row)
capital_ret = nominal_ret * leverages[-1]
return day_pnl, nominal_ret, capital_ret
class BaseAlpha(ABC):
'''Accepts instruments with fx code %attached'''
def __init__(
self,
trade_range=None,
instruments=[],
execrates=None,
commrates=None,
longswps=None,
shortswps=None,
dfs={},
positional_inertia=0
):
self.trade_range = trade_range
self.instruments = instruments
self.execrates = execrates if execrates is not None else np.zeros(len(instruments))
self.commrates = commrates if commrates is not None else np.zeros(len(instruments))
self.longswps = longswps if longswps is not None else np.zeros(len(instruments))
self.shortswps = shortswps if shortswps is not None else np.zeros(len(instruments))
self.dfs = dfs
self.positional_inertia = positional_inertia
def set_instruments_settings(self, instruments, execrates=None, commrates=None, longswps=None, shortswps=None):
self.instruments = instruments
self.execrates = execrates if execrates is not None else np.zeros(len(instruments))
self.commrates = commrates if commrates is not None else np.zeros(len(instruments))
self.longswps = longswps if longswps is not None else np.zeros(len(instruments))
self.shortswps = shortswps if shortswps is not None else np.zeros(len(instruments))
def set_dfs(self, dfs):
self.dfs = dfs
def get_instruments(self):
return self.instruments
def get_weights(self):
return self.weights_df
def get_positions(self):
return self.positions_df
def _get_targets(self):
return self.targets_df
def get_inst_last_targets(self, adjust_to_capital=None):
scalar = 1
if adjust_to_capital:
scalar = adjust_to_capital / self.get_capitals().values[-1]
last_targets = self._get_targets().values[-1]
result = {}
for i in range(len(self.instruments)):
result[self.instruments[i]] = scalar * last_targets[i]
return result
def get_capitals(self):
return self.capital_ser
def get_leverages(self):
return self.leverages_ser
def get_last_closes(self, fx_adjusted=False):
if fx_adjusted:
adj_closes = self.baseclosedf.values[-1]
return {self.instruments[i]: adj_closes[i] for i in range(len(self.instruments))}
closes = self.closedf.values[-1]
return {self.instruments[i] : closes[i] for i in range(len(self.instruments))}
async def write_stats(self, children=False):
assert self.portfolio_df is not None
'''do statistical analysis, bootstrapping tests, shattering analysis etc'''
def stats_on_df(portfolio_df):
tradeful_df = portfolio_df.loc[portfolio_df["capital_ret"] != 0]
costless_rets = tradeful_df["capital_ret"]
swapful_rets = costless_rets - tradeful_df["swap_penalty"]
execful_rets = costless_rets - tradeful_df["exec_penalty"]
commful_rets = costless_rets - tradeful_df["comm_penalty"]
costful_rets = costless_rets - tradeful_df["comm_penalty"] - tradeful_df["exec_penalty"] - tradeful_df["swap_penalty"]
costless_sharpe = np.mean(costless_rets.values) / np.std(costless_rets.values) * np.sqrt(253)
swapful_sharpe = np.mean(swapful_rets.values) / np.std(swapful_rets.values) * np.sqrt(253)
execful_sharpe = np.mean(execful_rets.values) / np.std(execful_rets.values) * np.sqrt(253)
commful_sharpe = np.mean(commful_rets.values) / np.std(commful_rets.values) * np.sqrt(253)
costful_sharpe = np.mean(costful_rets.values) / np.std(costful_rets.values) * np.sqrt(253)
costdrag_pa = (costless_sharpe - costful_sharpe) * np.std(costless_rets.values) * np.sqrt(253)
return {
"costdrag_pa": costdrag_pa,
"sharpe_costful": costful_sharpe,
"sharpe_costless": costless_sharpe,
"sharpe_swapful": swapful_sharpe,
"sharpe_execful": execful_sharpe,
"sharpe_commful": commful_sharpe,
}
stats_dict = {}
stats = stats_on_df(self.portfolio_df)
pprint(stats)
stats_dict["core"] = {
"df": self.portfolio_df,
"stats": stats
}
if children:
shattered_params = list(deepcopy(self).param_generator(shattered=True))
for i in range(len(shattered_params)):
component_df = await self.run_simulation(shattered=False, param_idx=i)
stats = stats_on_df(component_df)
pprint(stats)
stats_dict[str(shattered_params[i])] = {
"df": self.portfolio_df,
"stats": stats
}
return stats_dict
'''Exposes voldf, retdf, activedf, baseclosedf > child needs to exposre invriskdf, eligiblesdf'''
async def compute_metas(self, index):
@jit(nopython=True)
def numba_any(x):
return int(np.any(x))
vols, rets, actives, closes, fxconvs = [], [], [], [], []
aligner = pd.DataFrame(index=index)
for inst in self.instruments:
self.dfs[inst]["vol"] = (-1 + self.dfs[inst]["adj_close"] / self.dfs[inst].shift(1)["adj_close"]).rolling(30).std()
self.dfs[inst] = aligner.join(self.dfs[inst])
self.dfs[inst] = self.dfs[inst].fillna(method="ffill").fillna(method="bfill")
self.dfs[inst]["ret"] = -1 + self.dfs[inst]["adj_close"] / self.dfs[inst].shift(1)["adj_close"]
self.dfs[inst]["sampled"] = self.dfs[inst]["adj_close"] != self.dfs[inst].shift(1)["adj_close"]
self.dfs[inst]["active"] = self.dfs[inst]["sampled"].rolling(5).apply(numba_any, engine="numba", raw=True).fillna(0)
vols.append(self.dfs[inst]["vol"])
rets.append(self.dfs[inst]["ret"])
actives.append(self.dfs[inst]["active"])
closes.append(self.dfs[inst]["adj_close"])
for inst in self.instruments:
if inst[-3:] == "USD":
fxconvs.append(pd.Series(index=index, data=np.ones(len(index))))
elif inst[-3:] + "USD%USD" in self.dfs:
fxconvs.append(self.dfs[inst[-3:] + "USD%USD"]["adj_close"])
elif "USD" + inst[-3:] + "%" + inst[-3:] in self.dfs:
fxconvs.append(1 / self.dfs["USD" + inst[-3:] + "%" + inst[-3:]]["adj_close"])
else:
print("no resolution", inst)
exit()
self.voldf = pd.concat(vols, axis=1)
self.voldf.columns = self.instruments
self.retdf = pd.concat(rets, axis=1)
self.retdf.columns = self.instruments
self.activedf = pd.concat(actives, axis=1)
self.activedf.columns = self.instruments
closedf = pd.concat(closes, axis=1)
closedf.columns = self.instruments
fxconvsdf = pd.concat(fxconvs, axis=1)
fxconvsdf.columns = self.instruments
self.closedf = closedf
self.baseclosedf = fxconvsdf * closedf
pass
def init_portfolio_settings(self, trade_range):
self.portfolio_df = pd.DataFrame(index=trade_range) \
.reset_index() \
.rename(columns={"index" : "datetime"})
return 10000, 0.001, 1, self.portfolio_df
def get_strat_scaler(self, portfolio_vol, ewmas, ewstrats):
ann_realized_vol = np.sqrt(ewmas[-1] * 252)
return portfolio_vol / ann_realized_vol * ewstrats[-1]
@abstractmethod
def param_generator(self, shattered, param_idx=0):
return []
def get_shattered_axis_cardinality(self):
return len(list(deepcopy(self).param_generator(shattered=True)))
@abstractmethod
def set_positions(self, capital, strat_scalar, portfolio_vol, prev_positions, *args, **kwargs):
pass
@abstractmethod
def post_risk_management(self, nominal_tot, positions, weights, *args, **kwargs):
return nominal_tot, positions, weights
@abstractmethod
def zip_data_generator(self):
pass
def get_fees(self, baseclose_row, positions, prev_positions):
delta_positions = np.abs(positions - prev_positions)
notional_trade = delta_positions * baseclose_row
exec_fees = np.linalg.norm(notional_trade * self.execrates, ord=1)
comm_fees = np.linalg.norm(notional_trade * self.commrates, ord=1)
notional_long_holdings = np.abs(np.where(positions > 0, positions, 0) * baseclose_row)
notional_short_holdings = np.abs(np.where(positions < 0, positions, 0) * baseclose_row)
long_swaps = -1 * np.dot(notional_long_holdings, self.longswps) / 365 * 7/5
short_swaps = -1 * np.dot(notional_short_holdings, self.shortswps) / 365 * 7/5
swap_fees = long_swaps + short_swaps
return exec_fees, comm_fees, swap_fees
def set_weights(self, nominal_tot, positions, baseclose_row):
nominals = positions * baseclose_row
weights = np.nan_to_num(nominals / nominal_tot, nan=0, posinf=0, neginf=0)
return weights
async def run_simulation(self, verbose=False, delta_lag=0, shattered=True, param_idx=0):
assert (self.trade_range and self.instruments and self.dfs)
"""
Settings
"""
portfolio_vol = 0.20
trade_start = self.trade_range[0]
trade_end = self.trade_range[1]
trade_datetime_range = pd.date_range(
start=datetime(trade_start.year, trade_start.month, trade_start.day),
end=datetime(trade_end.year, trade_end.month, trade_end.day),
freq="D",
tz=pytz.utc
)
"""
Compute Metas
"""
await (self.compute_metas(index=trade_datetime_range, delta_lag=delta_lag, shattered=shattered, param_idx=param_idx))
"""
Initialisations
"""
capital, ewma, ewstrat, self.portfolio_df = self.init_portfolio_settings(trade_range=trade_datetime_range)
baseclose_prev = None
self.capitals = [capital]
self.ewmas = [ewma]
self.ewstrats = [ewstrat]
self.capital_rets = [0]
self.nominal_rets = [0]
self.nominalss = []
self.leverages = []
self.strat_scalars = []
self.chargeable_feess, self.exec_feess, self.comm_feess, self.swap_feess = [], [], [], []
self.chargeable_penalty, self.exec_penalty, self.comm_penalty, self.swap_penalty = [], [], [], []
self.units_held, self.weights_held = [], []
self.targets_log = []
self.inertia_log = []
for unzipped in self.zip_data_generator():
portfolio_i = unzipped["portfolio_i"]
portfolio_row = unzipped["portfolio_row"]
ret_i = unzipped["ret_i"]
ret_row = unzipped["ret_row"]
baseclose_i = unzipped["baseclose_i"]
baseclose_row = unzipped["baseclose_row"]
strat_scalar = 2
if portfolio_i != 0:
strat_scalar = self.get_strat_scaler(
portfolio_vol=portfolio_vol,
ewmas=self.ewmas,
ewstrats=self.ewstrats
)
day_pnl, nominal_ret, capital_ret = get_pnl_stats(
last_weights=self.weights_held[-1],
last_units=self.units_held[-1],
baseclose_prev=baseclose_prev,
ret_row=ret_row,
leverages=self.leverages,
)
self.capitals.append(self.capitals[-1] + day_pnl)
self.ewmas.append(0.06 * (capital_ret**2) + 0.94 * self.ewmas[-1] if nominal_ret != 0 else self.ewmas[-1])
self.ewstrats.append(0.06 * strat_scalar + 0.94 * self.ewstrats[-1] if nominal_ret != 0 else self.ewstrats[-1])
self.nominal_rets.append(nominal_ret)
self.capital_rets.append(capital_ret)
self.strat_scalars.append(strat_scalar)
positions, targets, nominal_tot, inertias = self.set_positions(
capital=self.capitals[-1],
strat_scalar=self.strat_scalars[-1],
portfolio_vol=portfolio_vol,
prev_positions=self.units_held[-1] if portfolio_i != 0 else np.zeros(len(self.instruments)),
**unzipped
)
weights = self.set_weights(nominal_tot, positions, baseclose_row)
nominal_tot, positions, weights = self.post_risk_management(
nominal_tot=nominal_tot,
positions=positions,
weights=weights,
**unzipped
)
exec_fees, comm_fees, swap_fees = self.get_fees(
baseclose_row=baseclose_row,
positions=positions,
prev_positions=self.units_held[-1] if portfolio_i != 0 else np.zeros(len(self.instruments))
) if self.capital_rets[-1] != 0 else (0, 0, 0)
self.exec_feess.append(exec_fees)
self.exec_penalty.append(exec_fees / self.capitals[-1])
self.comm_feess.append(comm_fees)
self.comm_penalty.append(comm_fees / self.capitals[-1])
self.swap_feess.append(swap_fees)
self.swap_penalty.append(swap_fees / self.capitals[-1])
chargeable_fees = exec_fees + comm_fees + swap_fees
self.chargeable_feess.append(chargeable_fees)
self.chargeable_penalty.append(chargeable_fees / self.capitals[-1])
self.capitals[-1]-= chargeable_fees
baseclose_prev = baseclose_row
self.nominalss.append(nominal_tot)
self.leverages.append(nominal_tot / self.capitals[-1])
self.units_held.append(positions)
self.targets_log.append(targets)
self.inertia_log.append(inertias)
self.weights_held.append(weights)
#end loop
"""
capitals, capital ret, costs 123, leverage, strat scalar, weights, positions
"""
units_df = pd.DataFrame(data=self.units_held, index=trade_datetime_range, columns=[inst + " units" for inst in self.instruments])
targets_df = pd.DataFrame(data=self.targets_log, index=trade_datetime_range, columns=[inst + " targets" for inst in self.instruments])
weights_df = pd.DataFrame(data=self.weights_held, index=trade_datetime_range, columns=[inst + " w" for inst in self.instruments])
inertias_df = pd.DataFrame(data=self.inertia_log, index=trade_datetime_range, columns=[inst + " inertia" for inst in self.instruments])
nominals_ser = pd.Series(data=self.nominalss, index=trade_datetime_range, name="nominal_tot")
stratscal_ser = pd.Series(data=self.strat_scalars, index=trade_datetime_range, name="strat_scalar")
leverages_ser = pd.Series(data=self.leverages, index=trade_datetime_range, name="leverages")
execpen_ser = pd.Series(data=self.exec_penalty, index=trade_datetime_range, name="exec_penalty")
commpen_ser = pd.Series(data=self.comm_penalty, index=trade_datetime_range, name="comm_penalty")
swappen_ser = pd.Series(data=self.swap_penalty, index=trade_datetime_range, name="swap_penalty")
chargeable_ser = pd.Series(data=self.chargeable_penalty, index=trade_datetime_range, name="cost_penalty")
nominal_ret_ser = pd.Series(data=self.nominal_rets, index=trade_datetime_range, name="nominal_ret")
capital_ret_ser = pd.Series(data=self.capital_rets, index=trade_datetime_range, name="capital_ret")
capital_ser = pd.Series(data=self.capitals, index=trade_datetime_range, name="capital")
self.weights_df = weights_df.copy()
self.positions_df = units_df.copy()
self.targets_df = targets_df.copy()
self.inertias_df = inertias_df.copy()
self.capital_ser = capital_ser.copy()
self.leverages_ser = leverages_ser.copy()
self.portfolio_df = pd.concat([
units_df,
weights_df,
stratscal_ser,
nominals_ser,
stratscal_ser,
leverages_ser,
execpen_ser,
commpen_ser,
swappen_ser,
chargeable_ser,
nominal_ret_ser,
capital_ret_ser,
capital_ser
], axis=1)
if verbose:
print(self.portfolio_df)
return self.portfolio_df
class Amalgapha(BaseAlpha):
def __init__(
self,
trade_range=None,
instruments=[],
execrates=None,
commrates=None,
longswps=None,
shortswps=None,
dfs={},
positional_inertia=0,
weightss=[],
leveragess=[],
strat_weights=None
):
super().__init__(
trade_range=trade_range,
instruments=instruments,
execrates=execrates,
commrates=commrates,
longswps=longswps,
shortswps=shortswps,
dfs=dfs,
positional_inertia=positional_inertia
)
self.weightss = weightss
self.leveragess = leveragess
self.strat_weights = np.ones(len(self.weightss)) / len(self.weightss) \
if not strat_weights else strat_weights
def param_generator(self, shattered, param_idx=0):
return super().param_generator(shattered=shattered)
async def compute_metas(self, index, delta_lag, shattered, param_idx):
await (super().compute_metas(index))
df = pd.DataFrame(index=index)
weights_dfs = []
leverages_dfs = []
for weights in self.weightss:
weights_df = df.join(pd.DataFrame(weights))
weights_dfs.append(weights_df)
for leverages in self.leveragess:
leverages_df = df.join(pd.DataFrame(leverages))
leverages_dfs.append(leverages_df)
self.weights_dfs = weights_dfs
self.leverages_dfs = leverages_dfs
pass
def post_risk_management(self, nominal_tot, positions, weights, *args, **kwargs):
return nominal_tot, positions, weights
def set_positions(self, capital, strat_scalar, portfolio_vol, prev_positions, \
ret_i=None, baseclose_row=None, **kwargs):
leveraged_weights = np.array([
weights_df.loc[ret_i].values * leverages_df.at[ret_i, "leverages"] \
for weights_df, leverages_df in zip(self.weights_dfs, self.leverages_dfs)
])
portfolio_weights = np.zeros(len(self.instruments))
for i in range(len(self.strat_weights)):
portfolio_weights += self.strat_weights[i] * leveraged_weights[i]
targets = strat_scalar * capital * portfolio_weights / baseclose_row
change = targets - prev_positions
percent_change = np.abs(change) / np.abs(targets)
inertia = self.positional_inertia
inertia_override = 0.0 + (percent_change > inertia)
not_inertia_override = 0.0 + (percent_change <= inertia)
positions = inertia_override * targets + not_inertia_override * prev_positions
positions = np.nan_to_num(positions, nan=0, posinf=0, neginf=0)
targets = np.nan_to_num(targets, nan=0, posinf=0, neginf=0)
nominal_tot = np.linalg.norm(positions * baseclose_row, ord=1)
return positions, targets, nominal_tot, inertia_override
def zip_data_generator(self):
for (portfolio_i, portfolio_row),\
(ret_i, ret_row),\
(baseclose_i, baseclose_row), \
in zip(\
self.portfolio_df.iterrows(),\
self.retdf.iterrows(),\
self.baseclosedf.iterrows()
):
portfolio_row = portfolio_row.values.astype('float64')
ret_row = ret_row.values.astype('float64')
baseclose_row = baseclose_row.values.astype('float64')
yield {
"portfolio_i": portfolio_i,
"portfolio_row": portfolio_row,
"ret_i": ret_i,
"ret_row": ret_row,
"baseclose_i": baseclose_i,
"baseclose_row": baseclose_row
}
class Alpha(BaseAlpha, ABC):
@abstractmethod
def compute_forecasts(self, portfolio_i, date, eligibles_row):
pass
def post_risk_management(self, nominal_tot, positions, weights, date_idx=None, eligibles_row=None, *args, **kwargs):
return nominal_tot, positions, weights
def zip_data_generator(self):
for (portfolio_i, portfolio_row),\
(ret_i, ret_row),\
(baseclose_i, baseclose_row), \
(eligibles_i, eligibles_row),\
(invrisk_i, invrisk_row),\
in zip(\
self.portfolio_df.iterrows(),\
self.retdf.iterrows(),\
self.baseclosedf.iterrows(),\
self.eligiblesdf.iterrows(),\
self.invriskdf.iterrows(),\
):
portfolio_row = portfolio_row.values.astype('float64')
ret_row = ret_row.values.astype('float64')
baseclose_row = baseclose_row.values.astype('float64')
eligibles_row = eligibles_row.values.astype('int32')
invrisk_row = invrisk_row.values.astype("float64")
yield {
"portfolio_i": portfolio_i,
"portfolio_row": portfolio_row,
"ret_i": ret_i,
"ret_row": ret_row,
"baseclose_i": baseclose_i,
"baseclose_row": baseclose_row,
"eligibles_i": eligibles_i,
"eligibles_row": eligibles_row,
"invrisk_i": invrisk_i,
"invrisk_row": invrisk_row,
}
def set_positions(self, capital, strat_scalar, portfolio_vol, prev_positions, \
portfolio_i=None, ret_i=None, eligibles_row=None, invrisk_row=None, baseclose_row=None, **kwargs):
forecasts, num_trading = self.compute_forecasts(portfolio_i=portfolio_i, date=ret_i, eligibles_row=eligibles_row)
vol_target = 1 \
/ max(1, num_trading) \
* capital \
* portfolio_vol \
/ np.sqrt(253)
targets = eligibles_row \
* strat_scalar \
* vol_target \
* forecasts \
* invrisk_row \
/ baseclose_row
change = targets - prev_positions
percent_change = np.abs(change) / np.abs(targets)
inertia = self.positional_inertia
inertia_override = 0.0 + (percent_change > inertia)
not_inertia_override = 0.0 + (percent_change <= inertia)
positions = inertia_override * targets + not_inertia_override * prev_positions
positions = np.nan_to_num(positions, nan=0, posinf=0, neginf=0)
targets = np.nan_to_num(targets, nan=0, posinf=0, neginf=0)
nominal_tot = np.linalg.norm(positions * baseclose_row, ord=1)
return positions, targets, nominal_tot, inertia_override