-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbdd100k2yolo.py
62 lines (47 loc) · 1.56 KB
/
bdd100k2yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import json
import os
from tqdm import tqdm
import cv2
def classify_classes(c_name):
vehicle = ["car", "truck", "bus", "train"]
if c_name in vehicle:
return 0
else:
return 1
def convert2yolo_roi(img_name, obj):
obj_name = obj["category"]
obj_class = classify_classes(obj_name)
obj_roi = obj['box2d']
img = cv2.imread(img_name)
img_w, img_h = img.shape[1], img.shape[0]
w = (obj_roi["x2"] - obj_roi["x1"])
h = (obj_roi["y2"] - obj_roi["y1"])
x = (obj_roi["x1"] + w/2)
y = (obj_roi["y1"] + h/2)
x, y, w, h = x/img_w, y/img_h, w/img_w, h/img_h
return "{} {} {} {} {}\n".format(obj_class, x, y, w, h)
if __name__ == '__main__':
imgRootPath = "./100k/train/"
labelPath = "./labels/bdd100k_labels_images_train.json"
with open(labelPath) as labelFile:
lines = json.load(labelFile)
counter = {"car": 0,
"truck": 0,
"bus": 0,
"train": 0,
"person": 0,
"rider": 0}
for line in tqdm(lines):
name = line['name']
labels = line['labels']
imgPath = imgRootPath + name
txtPath = imgPath.replace("jpg", "txt")
if not os.path.isfile(imgPath):
continue
with open(txtPath, "w")as file:
for label in labels:
category = label["category"]
if category in counter.keys():
counter[category] += 1
file.write(convert2yolo_roi(imgPath, label))
print("line_num : {}".format(len(lines)))