Skip to content

Latest commit

 

History

History
36 lines (24 loc) · 642 Bytes

File metadata and controls

36 lines (24 loc) · 642 Bytes

DSML-Classical-Machine-Learning-1

Machine Learning 1 :

Linear Regression

  • Simple and Multiple regression
    • OLS - closed form solutions
    • Gradient Descent
    • Batch | Stochastic | MiniBatch Gradient descent Regression
  • Ridge and Lasso Regularisation
  • ElasticNet Regularisation
  • Polynomial Features

Logistic Regression

k-Nearest Neighbours

Decision Tree

Ensemble Learning:

Bagging :
  • Bagging
  • Random Forest
Boosting :
  • GBDT - Gradient Boosting Decision Tree
  • XGBoost
  • Cascading
  • Stacking

Naive Bayes

SVM - Support vector Machine