-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
361 lines (314 loc) · 14.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# coding: utf-8
from time import time
import numpy as np
import math
import os
import sys
import json
from tqdm import tqdm, trange
import pdb
import rdkit
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from time import sleep
from model import MoleculeVAE
from dataset import TransformerDataset
from config import parser
from utils import visualize, result2mol
import os
import pickle
import torch.distributed as dist
from concurrent.futures import ProcessPoolExecutor
from rdkit import RDLogger
from optimization import WarmupLinearSchedule
class Trainer(object):
def __init__(self, dataloader_tr, dataloader_te, dataloader_val, args):
self.dataloader_tr = dataloader_tr
self.dataloader_te = dataloader_te
self.dataloader_val = dataloader_val
self.args = args
self.rank = args.local_rank
self.ntoken = 100
self.step = 0
self.eval_step = 0
self.epoch = 0
self.epoch_loss = 100
self.model = MoleculeVAE(args, self.ntoken, args.dim, args.depth).to(self.rank)
self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[self.rank], find_unused_parameters=True)
if not self.dataloader_tr is None:
self._optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()),
lr=self.args.lr)
self.scheduler = WarmupLinearSchedule(self._optimizer, warmup_steps=5000, t_total=args.epochs*len(self.dataloader_tr))
if args.checkpoint is not None:
self.initialize_from_checkpoint()
self.logger = None
if self.rank is 0:
self.logger = SummaryWriter("log/"+args.name)
self.logger.add_text('args', str(self.args), 0)
def initialize_from_checkpoint(self):
map_location = {'cuda:%d' % 0: 'cuda:%d' % self.rank}
state_dict = {}
for checkpoint in self.args.checkpoint:
checkpoint = torch.load(os.path.join(self.args.save_path, checkpoint), map_location=map_location)
for key in checkpoint['model_state_dict']:
if key in state_dict:
state_dict[key] += checkpoint['model_state_dict'][key]
else:
state_dict[key] = checkpoint['model_state_dict'][key]
for key in state_dict:
state_dict[key] = state_dict[key]/len(self.args.checkpoint)
self.model.module.load_state_dict(state_dict)
if self.dataloader_tr is not None:
self._optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.epoch = checkpoint['epoch']
self.step = checkpoint['step']
print('initialized!')
def save_model(self):
torch.save({
'epoch': self.epoch,
'step': self.step,
'model_state_dict': self.model.module.state_dict(),
'optimizer_state_dict': self._optimizer.state_dict(),
}, args.save_path + 'epoch-' + str(self.epoch) + '-loss-' + str(np.float(self.epoch_loss)))
def fit(self):
t_total = time()
total_loss = []
print('start fitting')
for _ in range(self.args.epochs):
if self.args.eval:
acc = trainer.evaluate()
print('epoch %d eval_acc: %.4f' % (self.epoch, acc))
if self.rank is 0:
if self.args.save:
self.save_model()
epoch_loss = self.train_epoch(self.epoch)
self.epoch_loss = epoch_loss
print('training loss %.4f' % epoch_loss)
total_loss.append(epoch_loss)
self.epoch += 1
print('optimization finished ')
print('Total tiem elapsed: {:.4f}s'.format(time() - t_total))
def train_epoch(self, epoch_cnt):
batch_losses = []
cnt = 0
true_cnt = 0
self.model.train()
torch.cuda.empty_cache()
if self.rank is 0:
pbar = tqdm(self.dataloader_tr)
else:
pbar = self.dataloader_tr
for batch_data in pbar:
self._optimizer.zero_grad()
for key in batch_data:
batch_data[key] = batch_data[key].to(self.rank)
output_dict = self.model('train', batch_data)
bond_loss = output_dict['bond_loss'].mean()
aroma_loss = output_dict['aroma_loss'].mean()
charge_loss = output_dict['charge_loss'].mean()
if self.rank is 0:
pbar.set_postfix(n=self.args.name, c='{:.2f}'.format(charge_loss),
a='{:.2f}'.format(aroma_loss), b='{:.2f}'.format(bond_loss))
loss = output_dict['loss'].mean()
batch_losses.append(loss.item())
loss.backward()
self._optimizer.step()
self.scheduler.step()
if self.step % 100 == 0 and self.logger:
self.logger.add_scalar('loss/total', loss.item(), self.step)
self.logger.add_scalar('loss/bond_loss', bond_loss.item(), self.step)
self.logger.add_scalar('loss/aroma_loss', aroma_loss.item(), self.step)
self.logger.add_scalar('loss/charge_loss', charge_loss.item(), self.step)
if self.args.vae:
kl_loss = output_dict['kl'].mean()
self.logger.add_scalar('loss/kl_loss', kl_loss.item(), self.step)
if kl_loss < 0.5:
self.args.beta *= 0.9
if kl_loss > 1:
self.args.beta *= 1.1
if self.step % 500 == 0:
output_dict = self.model('sample', batch_data, temperature = 0)
pred_aroma, pred_charge = output_dict['aroma'], output_dict['charge']
pred_bond = output_dict['bond']
element = batch_data['element']
reactant = batch_data['reactant']
src_bond, tgt_bond = batch_data['src_bond'], batch_data['tgt_bond']
tgt_aroma, tgt_charge = batch_data['tgt_aroma'].bool().long(), batch_data['tgt_charge']
src_mask, tgt_mask = batch_data['src_mask'], batch_data['tgt_mask']
for j in range(element.size()[0]):
_, pred_s, pred_valid = result2mol((element[j], src_mask[j], pred_bond[j], pred_aroma[j],
pred_charge[j], reactant[j]))
_, tgt_s, tgt_valid = result2mol((element[j], tgt_mask[j], tgt_bond[j], tgt_aroma[j], tgt_charge[j], reactant[j]))
if tgt_s in pred_s:
true_cnt += 1
cnt += element.size()[0]
self.step += 1
if not cnt is 0: # large batch, infrequent sampling
acc = true_cnt / cnt
else:
acc = -1
print('train acc', acc)
if self.logger:
self.logger.add_scalar('acc/train_acc', acc, self.epoch)
epoch_loss = np.mean(np.array(batch_losses, dtype=np.float))
return epoch_loss
def evaluate(self):
true_cnt = 0
cnt = 0
pool = ProcessPoolExecutor(2)
with torch.no_grad():
self.model.eval()
pbar = tqdm(self.dataloader_val)
for batch in iter(pbar):
self.eval_step += 1
if not self.eval_step % 3 == 0:
continue
batch_gpu = {}
for key in batch:
batch_gpu[key] = batch[key].to(self.rank)
b, l = batch['element'].shape
cnt += b
tgts = []
element = batch['element']
reactant = batch['reactant']
src_bond, tgt_bond = batch['src_bond'], batch['tgt_bond']
tgt_aroma, tgt_charge = batch['tgt_aroma'].bool().long(), batch['tgt_charge']
src_mask, tgt_mask = batch['src_mask'], batch['tgt_mask']
src_aroma, src_charge = batch['src_aroma'].bool().long(), batch['src_charge']
arg_list = [(element[i], tgt_mask[i], tgt_bond[i], tgt_aroma[i], tgt_charge[i], None) for i in range(b)]
result = pool.map(result2mol, arg_list, chunksize= 16)
result = list(result)
tgts = [item[1].split(".") for item in result] # _, tgt_s, tgt_valid
temperature = 0.7
output_dict = self.model('sample', batch_gpu, temperature)
pred_aroma, pred_charge = output_dict['aroma'].cpu(), output_dict['charge'].cpu()
pred_bond = output_dict['bond'].cpu()
arg_list = [(element[j], src_mask[j], pred_bond[j], pred_aroma[j], pred_charge[j], None) for j in range(b)]
result = pool.map(result2mol, arg_list, chunksize= 16)
result = list(result)
pred_smiles = [item[1].split(".") for item in result] # _, tgt_s, tgt_valid
for j in range(b):
# iterate over the batch
flag = True
for item in tgts[j]:
if not item in pred_smiles[j]:
flag = False
if flag:
true_cnt += 1
idx = np.random.randint(b)
src, src_smile = visualize(element[idx], src_mask[idx], src_bond[idx], src_aroma[idx], src_charge[idx], reactant[idx])
pred, pred_smile = visualize(element[idx], src_mask[idx], pred_bond[idx], pred_aroma[idx], pred_charge[idx], reactant[idx])
tgt, tgt_smile = visualize(element[idx], tgt_mask[idx], tgt_bond[idx], tgt_aroma[idx], tgt_charge[idx], reactant[idx])
ground_truth = np.concatenate([src, tgt], axis=1)
pred = np.concatenate([src, pred], axis=1)
image = np.concatenate([ground_truth, pred], axis=0)
if self.logger:
self.logger.add_image('image', image, self.epoch, dataformats='HWC')
self.logger.add_text('src/tgt/pred', src_smile+">>"+tgt_smile+"//"+pred_smile, self.epoch)
if not cnt is 0:
acc = true_cnt / cnt
print('eval acc %.4f' % acc)
if self.logger:
self.logger.add_scalar('acc/accuracy', acc, self.epoch)
return acc
else:
return 0
def test(self, temperature):
true_cnt = 0
cnt = 0
valid_cnt = 0
pool = ProcessPoolExecutor(10)
test_result = {'temperature':temperature}
pred = []
with torch.no_grad():
self.model.eval()
pbar = tqdm(self.dataloader_te)
for batch in iter(pbar):
batch_gpu = {}
for key in batch:
batch_gpu[key] = batch[key].to(self.rank)
b, l = batch['element'].shape
cnt += b
tgts = []
element = batch['element']
src_bond, tgt_bond = batch['src_bond'], batch['tgt_bond']
tgt_aroma, tgt_charge = batch['tgt_aroma'].bool().long(), batch['tgt_charge']
src_mask, tgt_mask = batch['src_mask'], batch['tgt_mask']
src_aroma, src_charge = batch['src_aroma'].bool().long(), batch['src_charge']
arg_list = [(element[i], tgt_mask[i], tgt_bond[i], tgt_aroma[i], tgt_charge[i], None) for i in range(b)]
result = pool.map(result2mol, arg_list, chunksize= 64)
result = list(result)
tgts = [item[1].split(".") for item in result] # _, tgt_s, tgt_valid
output_dict = self.model('sample', batch_gpu, temperature)
pred_aroma, pred_charge = output_dict['aroma'].cpu(), output_dict['charge'].cpu()
pred_bond = output_dict['bond'].cpu()
arg_list = [(element[j], src_mask[j], pred_bond[j], pred_aroma[j], pred_charge[j], None) for j in range(b)]
result = pool.map(result2mol, arg_list, chunksize= 64)
result = list(result)
pred_smiles = [item[1].split(".") for item in result] # _, tgt_s, tgt_valid
pred_valid = [item[2] for item in result] # _, tgt_s, tgt_valid
for j in range(b):
# iterate over the batch
flag = True
for item in tgts[j]:
if not item in pred_smiles[j]:
flag = False
if flag:
true_cnt += 1
if pred_valid[j]:
pred.append(pred_smiles[j])
valid_cnt += 1
else:
pred.append(None)
test_result['acc'] = true_cnt/cnt
test_result['valid'] = valid_cnt/cnt
test_result['pred'] = pred
test_result['ckpt'] = self.args.checkpoint
print("acc: %f, valid: %f"%(test_result['acc'], test_result['valid']))
with open("results/"+str(temperature)+ '_' + str(self.args.seed)+'.pickle', 'wb') as file:
pickle.dump(test_result, file)
return test_result
def load_data(args, name):
file = open('data/' + args.prefix + '_' + name + '.pickle', 'rb')
full_data = pickle.load(file)
file.close()
full_dataset = TransformerDataset(args.shuffle, full_data)
data_loader = DataLoader(full_dataset,
batch_size=args.batch_size,
shuffle=(name == 'train'),
num_workers=args.num_workers, collate_fn = TransformerDataset.collate_fn)
return data_loader
if __name__ == '__main__':
lg = RDLogger.logger()
lg.setLevel(RDLogger.CRITICAL)
RDLogger.DisableLog('rdApp.info')
args = parser.parse_args()
seed = args.seed + args.local_rank
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.set_device(args.local_rank)
args.save_path = args.save_path + '/' + args.name + '/'
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
print(args)
dist.init_process_group("nccl", rank=args.local_rank, world_size=args.world_size)
valid_dataloader = None
train_dataloader = None
test_dataloader = None
if args.train:
valid_dataloader = load_data(args, 'valid')
train_dataloader = load_data(args, 'train')
if args.test:
test_dataloader = load_data(args, 'test')
trainer = Trainer(train_dataloader, test_dataloader, valid_dataloader, args)
if args.train:
trainer.fit()
elif args.test:
for temperature in args.temperature:
trainer.test(temperature)