-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.js
406 lines (316 loc) · 17.5 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// Author: @Subash Praveen Instagram: @sub._.praveen Github: @SUBASH2309
var math = require('./math')
// visibility of cells 3x3
function three() {
// visibility for each element of the 3x3 matrix
document.getElementById('threer1c1').style.visibility = "visible";
document.getElementById('threer1c2').style.visibility = "visible";
document.getElementById('threer1c3').style.visibility = "visible";
document.getElementById('threer2c1').style.visibility = "visible";
document.getElementById('threer2c2').style.visibility = "visible";
document.getElementById('threer2c3').style.visibility = "visible";
document.getElementById('threer3c1').style.visibility = "visible";
document.getElementById('threer3c2').style.visibility = "visible";
document.getElementById('threer3c3').style.visibility = "visible";
document.getElementById('input-box-bg-3x3').style.visibility = "visible";
document.getElementById('input-matrix-text-3x3').style.visibility = "visible";
document.getElementById('cal3').style.visibility = "visible";
// Hide elements related to the 2x2 matrix
document.getElementById('cal2').style.visibility = "hidden";
document.getElementById('input-matrix-text-2x2').style.visibility = "hidden";
document.getElementById('input-box-bg-2x2').style.visibility = "hidden";
document.getElementById('twor1c1').style.visibility = "hidden";
document.getElementById('twor1c2').style.visibility = "hidden";
document.getElementById('twor2c1').style.visibility = "hidden";
document.getElementById('twor2c2').style.visibility = "hidden";
document.getElementById('end').style.visibility = "hidden";
}
// visibility of cells 2x2
function two() {
// visibility for each element of the 2x2 matrix
document.getElementById('twor1c1').style.visibility = "visible";
document.getElementById('twor1c2').style.visibility = "visible";
document.getElementById('twor2c1').style.visibility = "visible";
document.getElementById('twor2c2').style.visibility = "visible";
document.getElementById('input-box-bg-2x2').style.visibility = "visible";
document.getElementById('input-matrix-text-2x2').style.visibility = "visible";
document.getElementById('cal2').style.visibility = "visible";
// Hide elements related to the 3x3 matrix
document.getElementById('input-matrix-text-3x3').style.visibility = "hidden";
document.getElementById('cal3').style.visibility = "hidden";
document.getElementById('input-box-bg-3x3').style.visibility = "hidden";
document.getElementById('threer1c1').style.visibility = "hidden";
document.getElementById('threer1c2').style.visibility = "hidden";
document.getElementById('threer1c3').style.visibility = "hidden";
document.getElementById('threer2c1').style.visibility = "hidden";
document.getElementById('threer2c2').style.visibility = "hidden";
document.getElementById('threer2c3').style.visibility = "hidden";
document.getElementById('threer3c1').style.visibility = "hidden";
document.getElementById('threer3c2').style.visibility = "hidden";
document.getElementById('threer3c3').style.visibility = "hidden";
document.getElementById('end').style.visibility = "hidden";
}
function calculate2() {
// Output box element on the webpage
const twoutbox = document.getElementById('textarea');
// row1
var twr1c1 = document.getElementById("twor1c1").value;
var twr1c2 = document.getElementById("twor1c2").value;
// row2
var twr2c1 = document.getElementById("twor2c1").value;
var twr2c2 = document.getElementById("twor2c2").value;
// Matrix of 2x2
var tw_matrix = [[twr1c1, twr1c2], [twr2c1, twr2c2]];
// to find Determinant of the matrix
var twdet; // Determinant of the 2x2 matrix
twdet = math.det(tw_matrix);
// to get eigen values and Eigen vectors
var twev; // Eigenvalues and Eigenvectors for 2x2 matrix
twev = math.eigs(tw_matrix);
// to find eigen values and eigen vectors
var twevalues = twev.values;
var twevectors = twev.eigenvectors;
// to seprate Eigen Vectors into X1, X2, X3
// to be honest i don't even know what i did here :3, good luck figuring it out :D
var twv1 = Object.values(twevectors[0]);
var twv2 = Object.values(twevectors[1]);
var twvx1ur = Object.values(twv1[1]);
var twvx1a = math.round(twvx1ur[0], 2);
var twvx1b = math.round(twvx1ur[1], 2);
// For full values of X1
console.log("Eigen Vectors:");
console.log("X1\n");
console.log(twvx1ur[0]);
console.log(twvx1ur[1]);
console.log("-----")
var twvx2ur = Object.values(twv2[1]);
var twvx2a = math.round(twvx2ur[0], 2);
var twvx2b = math.round(twvx2ur[1], 2);
// For full values of X2
console.log("X2\n");
console.log(twvx2ur[0]);
console.log(twvx2ur[1]);
console.log("-----")
// to find the transpose of 2x2 matrix
var tw_transpose_matrix = Object.values(math.transpose(tw_matrix));
var tw_transpose_r1 = tw_transpose_matrix[0];
var tw_transpose_r2 = tw_transpose_matrix[1];
var tw_transpose_r3 = tw_transpose_matrix[2];
console.log("Transpose Of Matrix:")
console.log(tw_transpose_r1)
console.log(tw_transpose_r2)
console.log(tw_transpose_r3)
console.log("-----")
// to find whether the matrix is symmetric or skew-symmetric
var tw_matrix_type;
var tw_matrix_chk = JSON.stringify(tw_matrix);
var tw_transpose_matrix_chk = JSON.stringify(tw_transpose_matrix);
console.log("Matrix Type Chk:")
console.log("\tMatrix = \n\t"+tw_matrix_chk);
console.log("\tTransposed = \n\t"+tw_transpose_matrix_chk);
console.log("-----")
if (tw_matrix_chk == tw_transpose_matrix_chk) {
tw_matrix_type = "The Matrix is Symmetric i.e (A is equal to A*)";
var dia_ns = 0;
} else {
tw_matrix_type = "The Matrix is Skew-Symmetric i.e (A is not equal to A*)";
var dia_ns = 1;
}
console.log("Matrix Type:")
console.log("\t"+tw_matrix_type)
console.log("-----")
// to find the inverse of eigen vectors
var tw_ev_x1 = twv1[1];
var tw_ev_x2 = twv2[1];
// Eigen vectors of 2x2
// x1 = |a11| x2 = |b11|
// |a21| |b21|
// mat_b = |a11, b11|
// |a21, b21|
// this line of code does exactly what is given above :)
var mat_b = [[tw_ev_x1[0], tw_ev_x2[0]], [tw_ev_x1[1], tw_ev_x2[1]]];
var inv_mat_b = math.inv(mat_b);
var diagonalised_mat = math.multiply(inv_mat_b, tw_matrix, mat_b)
if (dia_ns == 0) { //symmetric
console.log("Normalised Matrix and Diagonalised Matrix")
console.log("-----")
// to round and display Diagonalised matrix
var diagonalised_mat_r1 = Object.values(diagonalised_mat[0]);
var diagonalised_mat_r2 = Object.values(diagonalised_mat[1]);
var dia_matr1_a11 = math.round(diagonalised_mat_r1[0]);
var dia_matr1_a12 = math.round(diagonalised_mat_r1[1]);
var dia_matr1_a1 = [dia_matr1_a11, dia_matr1_a12];
var dia_matr2_a21 = math.round(diagonalised_mat_r2[0]);
var dia_matr2_a22 = math.round(diagonalised_mat_r2[1]);
var dia_matr1_a2 = [dia_matr2_a21, dia_matr2_a22];
//TODO: Normalized Matrix
// | +"\n\n\tNormalised Matrix (N)"+"\n\t\t|"+"placeholder"+"|"+"\n\t\t|"+"placeholder"+"|"
twoutput = "\n\tDeterminant of the matrix = "+twdet+"\n\n\t"+tw_matrix_type+"\n\n\tEigen values ('λ') = "+math.round(Object.values(twevalues))+"\n\n\tEigen Vectors:\n\t\tX1 = ["+twvx1a+", "+twvx1b+"]"+"\n\t\tX2 = ["+twvx2a+", "+twvx2b+"]"+"\n\n\tDiagonalized Matrix (D):"+"\n\t\t|"+dia_matr1_a1+"|"+"\n\t\t|"+dia_matr1_a2+"|";
twoutbox.innerHTML = twoutput;
} else if (dia_ns == 1){ //Skew-symmetric
console.log("Inverse Of Matrix and Diagonalised Matrix")
console.log("-----")
// to round and display Diagonalised matrix
var diagonalised_mat_r1 = Object.values(diagonalised_mat[0]);
var diagonalised_mat_r2 = Object.values(diagonalised_mat[1]);
var dia_matr1_a11 = math.round(diagonalised_mat_r1[0]);
var dia_matr1_a12 = math.round(diagonalised_mat_r1[1]);
var dia_matr1_a1 = [dia_matr1_a11, dia_matr1_a12];
var dia_matr2_a21 = math.round(diagonalised_mat_r2[0]);
var dia_matr2_a22 = math.round(diagonalised_mat_r2[1]);
var dia_matr1_a2 = [dia_matr2_a21, dia_matr2_a22];
twoutput = "\n\tDeterminant of the matrix = "+twdet+"\n\n\t"+tw_matrix_type+"\n\n\tEigen values ('λ') = "+math.round(Object.values(twevalues))+"\n\n\tEigen Vectors:\n\t\tX1 = ["+twvx1a+", "+twvx1b+"]"+"\n\t\tX2 = ["+twvx2a+", "+twvx2b+"]"+"\n\n\tDiagonalized Matrix (D):"+"\n\t\t|"+dia_matr1_a1+"|"+"\n\t\t|"+dia_matr1_a2+"|";
twoutbox.innerHTML = twoutput;
}
}
function calculate3() {
// Output box element on the webpage
const thoutbox = document.getElementById('textarea');
// row1
var thr1c1 = document.getElementById("threer1c1").value;
var thr1c2 = document.getElementById("threer1c2").value;
var thr1c3 = document.getElementById("threer1c3").value;
// row2
var thr2c1 = document.getElementById("threer2c1").value;
var thr2c2 = document.getElementById("threer2c2").value;
var thr2c3 = document.getElementById("threer2c3").value;
// row3
var thr3c1 = document.getElementById("threer3c1").value;
var thr3c2 = document.getElementById("threer3c2").value;
var thr3c3 = document.getElementById("threer3c3").value;
// Matrix of 3x3
var th_matrix = [[thr1c1, thr1c2, thr1c3], [thr2c1, thr2c2, thr2c3], [thr3c1, thr3c2, thr3c3]];
// to find Determinant of the matrix
var thdet; // Determinant of the 3x3 matrix
thdet = math.det(th_matrix);
// to find Eigen values and Eigen vectors
var thev; // Eigenvalues and Eigenvectors for 3x3 matrix
thev = math.eigs(th_matrix);
// to separate eigen values and eigen vectors
var thevalues = thev.values; //Eigen values of 3x3
var thevectors = thev.eigenvectors; //Eigen vectors of 3x3
// to seprate Eigen Vectors into X1, X2, X3
// to be honest i don't even know what i did here :3, good luck figuring it out :D
var thv1 = Object.values(thevectors[0]);
var thv2 = Object.values(thevectors[1]);
var thv3 = Object.values(thevectors[2]);
var thvx1ur = Object.values(thv1[1]);
var thvx1a = math.round(thvx1ur[0], 2);
var thvx1b = math.round(thvx1ur[1], 2);
var thvx1c = math.round(thvx1ur[2], 2);
// For full values of x1
console.log("Eigen Vectors:");
console.log("X1\n");
console.log(thvx1ur[0]);
console.log(thvx1ur[1]);
console.log(thvx1ur[2]);
console.log("-----")
var thvx2ur = Object.values(thv2[1]);
var thvx2a = math.round(thvx2ur[0], 2);
var thvx2b = math.round(thvx2ur[1], 2);
var thvx2c = math.round(thvx2ur[2], 2);
// For full values of X2
console.log("X2\n");
console.log(thvx2ur[0]);
console.log(thvx2ur[1]);
console.log(thvx2ur[2]);
console.log("-----")
var thvx3ur = Object.values(thv3[1]);
var thvx3a = math.round(thvx3ur[0], 2);
var thvx3b = math.round(thvx3ur[1], 2);
var thvx3c = math.round(thvx3ur[2], 2);
// For full values of X3
console.log("X3\n");
console.log(thvx3ur[0]);
console.log(thvx3ur[1]);
console.log(thvx3ur[2]);
console.log("-----")
// to find the transpose of 3x3 matrix
var th_transpose_matrix = Object.values(math.transpose(th_matrix));
var th_transpose_r1 = th_transpose_matrix[0];
var th_transpose_r2 = th_transpose_matrix[1];
var th_transpose_r3 = th_transpose_matrix[2];
console.log("Transpose Of Matrix:")
console.log(th_transpose_r1)
console.log(th_transpose_r2)
console.log(th_transpose_r3)
console.log("-----")
// to find whether the matrix is symmetric or skew-symmetric
var th_matrix_type;
var th_matrix_chk = JSON.stringify(th_matrix);
var th_transpose_matrix_chk = JSON.stringify(th_transpose_matrix);
console.log("Matrix Type Chk:")
console.log("\tMatrix = \n\t"+th_matrix_chk);
console.log("\tTransposed = \n\t"+th_transpose_matrix_chk);
console.log("-----")
if (th_matrix_chk == th_transpose_matrix_chk) {
th_matrix_type = "The Matrix is Symmetric i.e (A is equal to A*)";
var dia_ns = 0;
} else {
th_matrix_type = "The Matrix is Skew-Symmetric i.e (A is not equal to A*)";
var dia_ns = 1;
}
console.log("Matrix Type:")
console.log("\t"+th_matrix_type)
console.log("-----")
// to find the inverse of eigen vectors
var th_ev_x1 = thv1[1];
var th_ev_x2 = thv2[1];
var th_ev_x3 = thv3[1];
// Eigen vectors of 3x3
// |a11| |b11| |c11|
// x1 = |a21| x2 = |b21| x3 = |c21|
// |a31| |b31| |c31|
// |a11, b11, c11|
// mat_b = |a21, b21, c21|
// |a31, b31, c31|
// this line of code below does exactly what is given above :)
var mat_b = [[th_ev_x1[0], th_ev_x2[0], th_ev_x3[0]], [th_ev_x1[1], th_ev_x2[1], th_ev_x3[1]], [th_ev_x1[2], th_ev_x2[2], th_ev_x3[2]]]
var inv_mat_b = math.inv(mat_b);
var diagonalised_mat = math.multiply(inv_mat_b, th_matrix, mat_b);
if (dia_ns == 0) { //symmetric
console.log("Normalised Matrix and Diagonalised Matrix")
console.log("-----")
// to round and display Diagonalised Matrix
var diagonalised_mat_r1 = Object.values(diagonalised_mat[0]);
var diagonalised_mat_r2 = Object.values(diagonalised_mat[1]);
var diagonalised_mat_r3 = Object.values(diagonalised_mat[2]);
var dia_matr1_a11 = math.round(diagonalised_mat_r1[0]);
var dia_matr1_a12 = math.round(diagonalised_mat_r1[1]);
var dia_matr1_a13 = math.round(diagonalised_mat_r1[2]);
var dia_matr1_a1 = [dia_matr1_a11, dia_matr1_a12, dia_matr1_a13];
var dia_matr2_a21 = math.round(diagonalised_mat_r2[0]);
var dia_matr2_a22 = math.round(diagonalised_mat_r2[1]);
var dia_matr2_a23 = math.round(diagonalised_mat_r2[2]);
var dia_matr1_a2 = [dia_matr2_a21, dia_matr2_a22, dia_matr2_a23];
var dia_matr3_a31 = math.round(diagonalised_mat_r3[0]);
var dia_matr3_a32 = math.round(diagonalised_mat_r3[1]);
var dia_matr3_a33 = math.round(diagonalised_mat_r3[2]);
var dia_matr1_a3 = [dia_matr3_a31, dia_matr3_a32, dia_matr3_a33];
//TODO: Normalized Matrix
// | +"\n\n\tNormalised Matrix (N):"+"\n\t\t|"+"placeholder"+"|"+"\n\t\t|"+"placeholder"+"|"+"\n\t\t|"+"placeholder"+"|"
thoutput = "\n\tDeterminant of the matrix = "+thdet+"\n\n\t"+th_matrix_type+"\n\n\tEigen values ('λ') = "+math.round(Object.values(thevalues))+"\n\n\tEigen Vectors:\n\t\tX1 = ["+thvx1a+", "+thvx1b+", "+thvx1c+"]"+"\n\t\tX2 = ["+thvx2a+", "+thvx2b+", "+thvx2c+"]"+"\n\t\tX3 = ["+thvx3a+", "+thvx3b+", "+thvx3c+"]"+"\n\n\tDiagonalized Matrix (D):"+"\n\t\t|"+dia_matr1_a1+"|"+"\n\t\t|"+dia_matr1_a2+"|"+"\n\t\t|"+dia_matr1_a3+"|";
thoutbox.innerHTML = thoutput;
} else if (dia_ns == 1){ //skew-symmetric
console.log("Inverse Of Matrix and Diagonalised Matrix")
console.log("-----")
// to round and display Diagonalised Matrix
var diagonalised_mat_r1 = Object.values(diagonalised_mat[0]);
var diagonalised_mat_r2 = Object.values(diagonalised_mat[1]);
var diagonalised_mat_r3 = Object.values(diagonalised_mat[2]);
var dia_matr1_a11 = math.round(diagonalised_mat_r1[0]);
var dia_matr1_a12 = math.round(diagonalised_mat_r1[1]);
var dia_matr1_a13 = math.round(diagonalised_mat_r1[2]);
var dia_matr1_a1 = [dia_matr1_a11, dia_matr1_a12, dia_matr1_a13];
var dia_matr2_a21 = math.round(diagonalised_mat_r2[0]);
var dia_matr2_a22 = math.round(diagonalised_mat_r2[1]);
var dia_matr2_a23 = math.round(diagonalised_mat_r2[2]);
var dia_matr1_a2 = [dia_matr2_a21, dia_matr2_a22, dia_matr2_a23];
var dia_matr3_a31 = math.round(diagonalised_mat_r3[0]);
var dia_matr3_a32 = math.round(diagonalised_mat_r3[1]);
var dia_matr3_a33 = math.round(diagonalised_mat_r3[2]);
var dia_matr1_a3 = [dia_matr3_a31, dia_matr3_a32, dia_matr3_a33];
thoutput = "\n\tDeterminant of the matrix = "+thdet+"\n\n\t"+th_matrix_type+"\n\n\tEigen values ('λ') = "+math.round(Object.values(thevalues))+"\n\n\tEigen Vectors:\n\t\tX1 = ["+thvx1a+", "+thvx1b+", "+thvx1c+"]"+"\n\t\tX2 = ["+thvx2a+", "+thvx2b+", "+thvx2c+"]"+"\n\t\tX3 = ["+thvx3a+", "+thvx3b+", "+thvx3c+"]"+"\n\n\tDiagonalized Matrix (D):"+"\n\t\t|"+dia_matr1_a1+"|"+"\n\t\t|"+dia_matr1_a2+"|"+"\n\t\t|"+dia_matr1_a3+"|";
thoutbox.innerHTML = thoutput;
}
}